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STABLE PERIODIC ORBITS ABOUT THE SUN 

PERTURBED EARTH-MOON TRIANGULAR POINTS 

by 

Ronald Kolenkiewicz and Lloyd Carpenter 

ABSTRACT 

A method of general perturbations utilizing trigonometric series is used to 

investigate motion in the vicinity of the triangular equilibrium point of the earth- 

moon system. The model used is that of the restricted problem of four bodies 

for the earth-moon-sun system. In this model the three principle bodies a re  

periodic, coplanar, and obey the equations of motion. A stable, periodic, coplanar 

orbit is calculated. In the synodic system it appears elliptical in shape, having 

a semimajor axis of 90,000 miles and an eccentricity of 0.5. The minor axis is 

parallel to the earth triangular point line. The mean motion of the particle de- 

scribing this orbit is synchronized with that of the sun such that their angular 

positions coincide closely whenever the particle crosses one of the axes of the 

ellipse. This orbit, although one and one-half times larger, tends to confirm a 

conclusion by Schechter4predicting that such an orbit exists. 
(%, 61- ~ C C ,  A r A A  Guthue,  G8-I a ~ d  FltyA ~ ' w - ; s  &f. 1447) 

A second orbit is also calculated, This stable orbit is similar in size and 

shape, but 180 degrees out of phase with the first orbit. The calculation of a 

small unstable coplanar orbit near the triangular point is reported. This result 

would agree with Schechter * s second conclusion that small coplanar motions near 

the triangular points wi l l  grow large. 
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STABLE PERIODIC ORBITS ABOUT THE SUN 

PERTURBED EARTH-MOON TRIANGULAR POINTS 

I. INTRODUCTION 

In a recent paper' Schechter concluded a stable, periodic, coplanar orbit can 

exist about the sun perturbed earth-moon triangular point. The model used for 

the moon's motion was  that of the variational orbit using de Pont6coulant's nota- 

tion for arguments. The present paper confirms the conclusion by presenting a 

numerical solution of a somewhat larger orbit, having the same essential fea- 

tures of the orbit predicted by Schechter. In addition, a second similar orbit 

having a phase difference of 180 degrees is calculated. A linear stability 

analysis showed both of these orbits to be stable. The model of the earth-moon- 

sun system used in the calculation of the orbits is one in which these three 

principle bodies are periodic, coplanar, and obey the equations of motion. The 

theory of the moon which is used in this paper corresponds to the part of the 

Hill-Brown classical lunar theory containing variational and purely parallactic 

angular distance between the sun and the moon, The numerical procedure used 

to obtain the model yields both types of terms simultaneously whereas they are 

obtained separately, using two completely different procedures, in the classical 

theory. The models of Ref. 1 and this paper are thus seen to be essentially in 

agreement. A second conclusion of Ref. 1 is that small coplanar motions near 

the triangular points wil l  grow large. The present paper agrees with this con- 

clusion by reporting the calculation of an unstable periodic orbit near the tri- 

angular points . 
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11. ANALYSIS 

The equations of motion used to obtain the periodic orbits of the particle 

a re  : 

All position vectors a re  referred to the earth and m is the mass of the particle, 

put equal to zero in the computation, but kept in the equations for completeness. 

- 
r 

r 3  

r 

p3  = r 3  - r 

p1  = r l  - r 

is the position vector of the particle 

is the position vector of the moon 

is the position vector of the sun 

- 

- 

- - - 

- - - 

m l  

m 2  

m 3  

p2 = R 2  (m2+m) where R is the Gaussian constant. 

t is the time. 

is the mass of the sun 

is the mass of the earth 

is the mass of the moon 

A digital computer is used in obtaining solutions for these equations. 

No approximations a re  made in the equations of motion. The masses and mean 

motions a re  given numerical values. The values of the constants used are: 
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mean motion of the sun, n 1  = 129597742!'38 per Julian Century 

mean motion of the moon, n3 = 1732559353!'56 per Julian Century 

geocentric gravitational constant, G m 2  = 398603x109m3sec- 

the measure of 1 A.U., a l  = 149600X106m 

semimajor axis of the moon, a3 = 3.847487965x108m 

m3/m2 = 1/81.30 

m,/m2 = 332958.087932061 

The procedure used in obtaining a solution for the earth-moon-sun model as 

well as for the periodic triangular point orbits is based on Musen's* method 

with the perturbations represented in trigonometric series with numerical 

coefficients. A linear stability analysis was made by considering the variational 

equation and the stability w a s  determined in the usual way from the character- 

istic roots.3 The solutions of the equations of motion are given in the following 

form (See Figure 1) 

- 
where a and P are  the components of the perturbations, To is the position 

vector in a fixed reference ellipse and 

Kepler's law is n 2  a3 = p2 where n is the mean motion and a is the semimajor 

axis of the reference ellipse. Since the only reference ellipses used will  have 

zero eccentricity, ro 

trigonometric series 

a. The functions a and P are  represented by the 
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U = ( a i c )  C O S  k 9  + aLs) sin k9) 
k = O  

where 9 = (n3-nl)t .  

III. SOLUTIONS 

Solutions for the motions of the moon and sun are found first. Together 

these solutions define the model of the earth-moon-sun system that wil l  be used. 

Equations of motion for the moon and sun are obtained by interchanging the 

symbols in Equation (1). These equations a re  solved in the following manner. 

Starting with the sun constrained to move in a circular, coplanar, Keplerian orbit 

with respect to the earth the equations of motion for the moon are solved. 

Trigonometric coefficients, a and P ,  describing the moon's perturbed orbit 

are  thus obtained, The role of the bodies is reversed, the moon's motion is 

constrained to move in the perturbed orbit defined by a and P and the equations 

of motion for the sun are  solved. The a and P coefficients describing the sun's 

perturbed orbit are thus obtained. The roles of the bodies are reversed again 

and again each time using the latest acquired a and ,B coefficients to define the 

motion of their respective body. Ultimately the values of the a and P coeffi- 

cients for each of the bodies do not change from one reversal to the next. The 

problem is then solved since both bodies, when not constrained, satisfy the 

equations of motion and move in orbits defined by their respective a and P 

4 

'. 



coefficients. This is a particular solution of the three body problem in which 

the bodies move in periodic orbits with respect to each other. The period of the 

motion is the synodic period of the bodies, P, given by the equation 

P = 2 x / ( n 3  - n l >  

The coefficients for the sun solution are given in Table 1. Since the form of the 

sun solution is similar to that of the particle, Equations (2), (3), (4) and (5) rep- 

resent its position if ro  = a = a l  and n = nl. For the number of decimal 

places given in Table 1, the relative geocentric position of the sun can be ob- 

tained to twelve significant figures. In this paper the same accuracy wil l  be 

given for all orbits. A plot of the position of the sun is shown in Figure 2. 

Table 2 contains the coefficients for the moon solution. Again Equations (2), 

(3), (4), and (5) represent the position of the moon if ro a = a3 and n = n3.  

A plot of the position of the moon is shown in Figure 3. This curve corresponds 

to the Hill-Brown theory containing variational and purely parallactic terms. 

The sun and moon solutions define the model that wil l  be used in finding periodic 

orbits about the earth-moon triangular point Coefficients describing a periodic 

orbit about a triangular point are given in Table 3. This orbit will  be referred 

to as Orbit I. Linear stability analysis showed this orbit to be stable. Coeffi- 

cients for a second orbit, Orbit 11, are given in Table 4. This orbit was also 

found to  be stable. Equations (2), (3), (4) and (5) describe the position of these 

orbits if n = n3 and a is found from the equations 

n;a3 = G m 2  
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For the constants of this paper ro  

orbits are plotted in Figure 4 in the a ,  P coordinate system. The origin of this 

coordinate system is located (See Figure 1) at cp = 60°,  ro = 3.831841237 x 108m. 

These orbits, therefore, go around the triangular point which is in advance of the 

moon's position. This triangular point is analogous to the L, Lagrange equilib- 

rium point of the restricted three body problem. In the restricted three body 

problem the triangular points (L, and L, ) for the earth-moon system are  located 

by the two points making equilateral triangles with the earth-moon positions 

forming one side of the triangle. If this definition were used in the present case 

the triangular points would describe orbits identical to the moon's orbit shown 

in Figure 3. The above method for describing triangular points wil l  not be used 

in this paper, It has been found to be more convenient to define reference points 

that a re  fixed in the synodic system. These reference points, R, and R, , are 

the two points making equilateral triangles with the center of the earth and the 

mean geometrical position of the moon TM, defined by the equation 

a = 3.831841237 x lo8m. The two periodic 

- 

The coefficients in Table 2 were used in this calculation which yielded TM = 

3.844099188 x 108m. The location of R, on Figure 4 is seen to be a = 3198.970432 

x 

the orbit implied in Reference 1 are  given in Table 5. 

P = 0.0. With this definition of triangular point the a ,  ,8 coefficients for 

IV. DISC USSION 

The orbit described in Reference 1 is plotted in Figure 4 using the coeffi- 

cients in Table 5. It appears as an ellipse centered at the triangular point, R, , 
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with  its major axis perpendicular to a line joining the earth and R, (i.e. parallel 

to the f i  axis). This ellipse has an eccentricity of 0.5 and its semimajor axis is 

58,128 miles. The scale used on Figure 4 is one in which the value of a or p 

equivalent to one corresponds to 2.380990996~10~ miles. The motion of the 

particle describing this orbit is synchronized with that of the sun such that their 

angular positions coincide closely whenever the particle crosses one of the axes 

of the ellipse. At epoch (8=0) the sun is on the positive a axis as  is the particle, 

The period of the orbit is the synodic period of the earth-moon-sun system given 

by Equation (6). Orbit I calculated in this paper is elliptical in shape and has its 

semimajor axis approximately parallel to the /3 axis. A s  seen in Figure 4 its 

center is not located at the R, triangular point. h this respect it is similar to 

the periodic orbits about triangular points that are  obtained in the restricted 

three body problem. The semimajor axis is approximately 90,000 miles and 

the semiminor axis is approximately 44,000 miles yielding an eccentricity close 

to 0.5. The mean motion of the particle describing this orbit is synchronized 

with that of the sun such that their angular positions coincide closely whenever 

the particle crosses one of the axes of the ellipse. 

Orbit 11, although having a phase difference of 180 degrees and slightly 

smaller in size, is very similar to Orbit I. Its semimajor axis is approximately 

88,000 miles and semiminor axis is approximately 43,000 miles giving it an 

eccentricity close to 0.5. At epoch the particle for Orbit I1 is on the opposite 

side of the ellipse from the particle for Orbit I. Orbit I1 is thus seen to be 

synchronized with the sun so their angular positions almost coincide when the 
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particle crosses one of the axes of the ellipse; however, it is 180 degrees out of 

phase with Orbit I. 

To date these are  the only stable periodic orbits for this particular model 

of the earth-moon-sun system that have been calculated. Orbit I has enough 

similarities to the orbit predicted in Reference 1 that it may indeed be the same 

orbit. 

An unstable periodic orbit has been calculated about R, for the same model 

of the earth-moon-sun system used in this paper. It is very close to the trian- 

gular point remaining within 3100 miles of the point during its orbit. Making 

two loops about the R, point per synodic period, it is similar in geometry to a 

previous orbit shown by Kolenkiewicz and Carpenter,. This orbit agrees with 

the conclusion, also made in Reference 1, that small coplanar motions near the 

triangular points will grow large. 

8 



REFERENCES 

'Schechter, H. B., "Three-Dimensional Nonlinear Stability Analysis of the 

Sun-Perturbed Earth-Moon Equilateral Points , I 1  Paper 67-566, A I M  Guidance, 

Control and Flight Dynamics Conference, Huntsville, Alabama, August 14-16, 

1967. 

*Musen, P. and Carpenter, L., "On the General Planetary Perturbations in 

Rectangular Coordinates," J. Geophys. Res. 68, 2727-2734 (1963). 

3Hartman, P., Ordinary Differential Equations (John Wiley and Sons, Inc., 

New York, 1966). 

4Kolenkiewicz, R. and Carpenter, L., "Periodic Motion Around the Trian- 

gular Libration Point in the Restricted Problem of Four Bodies," Astron, J. 70, 

180-183 (1966). 

9 



TABLE 1 

Three body sun solution, cp = 0" 

k pis) x 106 

0 

4 

5 

6 

7 

0.045 105 

3 0.94 986 8 

- 0.0 04 947 

0.047 3 2 9 

- 0.000005 
0.0001 84 

0.000000 

0.000001 

0 .oooooo 

3 1.4 92 85 1 

-0.005012 

0.047 3 19 

-0.000005 

0.000183 

0.000000 

0.000001 
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TABLE 2 

Three body moon solution, cp = 0" 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

-9 06.915 74 0 

287.606767 

-7 173.506863 

-7 $5 07078 

6.028443 

-0.003392 

0.032454 

0.000011 

0.000187 

0.000000 

0.000001 

0.000000 

-609.076345 

10202.254541 

7.21225 9 

5.719334 

0.005816 

0.0275 66 

0.000025 

0.000163 

0.000000 

0.000001 

. : 
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TABLE 3 

Periodic Orbit I, cp = 60" 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

-19171.568123 

187 801.1 35 97 8 

11131.030603 

- 2 8 74.4 7 24 1 8 

5 82.1 34 7 8 1 

-123.327 707 

26.570848 

-5.830085 

1.327555 

-0.314593 

0.075554 

-0.017 829 

0.0 04 114 

- 0.0 0095 5 
0.000230 

-0.00005 7 

0.000014 

-0.000003 

0 .ooooo 1 

0.000000 

17178.314916 

-3722.872058 

737.568028 

-176.988257 

47.337357 

-12.692022 

3.27 1408 

-0.827212 

0.214693 

-0.05 8253 

0.016064 

-0.004335 

0.001136 

-0.000296 

0.000080 

-0.000022 

0.000006 

-0.000002 

7475 3.5427 68 

-13120.769748 

2352.545921 

-637.564775 

17 3.574850 

-4 6.87 2 02 9 

12.244230 

-3.0926 92 

0.7 81757 

-0.205 945 

0.05 6669 

-0.015680 

0.004214 

-0.001100 

0.000288 

-0.000078 

0.000022 

-0.000006 

0.000002 

0.000000 

-37 7 986.165 2 18 

18027.013465 

-2521.769547 

518.179570 

-110 -607 813 

24.01 07 89 

-5.355760 

1.245 87 2 

-0.299764 

0.072270 

-0.017002 

0.003918 

-0.000914 

0.000222 

-0.000055 

0.000013 

-0.000003 

0.000001 
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TABLE 4 

Periodic Orbit 11, cp = 60" 

-. k u p  x 106 p p  x 106 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

-18160.912624 

-183627.357659 

10460.900708 

27 15.8137 3 8 

544.831763 

114.117818 

24.309814 

5.274431 

1.187793 

0.278619 

0.066360 

0.015564 

0.003576 

0.000826 

0.000198 

0.00004 9 

0.000012 

0.000003 

0.000001 

0.000000 

-16818.0882 05 

-337 1.7 90401 

-64 8.1175 7 1 

-152.630065 

-4 0.35 34 14 

-1 0.697742 

-2.7 16444 

- 0.674485 
-0.17 1971 

-0.04602 1 

-0.012554 

-0.003350 

-0.000865 

-0.000222 

-0.000059 

-0.000016 

-0.000004 

-0.000001 

72212.688988 

11392.91717 9 

2116.289582 

563.594410 

151.103055 

40.27 0023 

10.365 54 1 

2.5 7 1492 

0.63727 7 

0.164972 

0.044817 

0.012271 

0.00325 9 

0.000838 

0.000215 

0.00005 7 

0.000016 

0.0 00 004 

0.000001 

0.000000 

370250.263893 

17696.741894 

2418.999900 

487.952665 

102.700732 

22.014409 

4.851307 

1.1155 5 2 

0.265686 

0.063541 

0.014861 

0.003409 

0.000792 

0.000192 

0.0 0 004 8 

0.000012 

0.000003 

0.000001 
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TABLE 5 

Triangular point periodic orbit from Reference 1, 9 = 60" 

.- 

0 3198.970432 0.000000 0.000000 0.000000 

1 122066.820297 0.000000 0.000000 -244133.640 594 

. 
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Figure 1 .  Coordinate System 
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